
This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

THE SYNTHESIS AND PROPERTIES OF SUBSTITUTED TERTIARY BISMUTHINE LIGANDS

Wiliam Levason^a; Baharrudin Sheikh^a; Francis P. McCullough^{ab}

^a Department of Chemistry, The University, Southampton ^b Dow Chemicals (Texas Division), Freeport, Texas, USA

To cite this Article Levason, Wiliam , Sheikh, Baharrudin and McCullough, Francis P.(1982) 'THE SYNTHESIS AND PROPERTIES OF SUBSTITUTED TERTIARY BISMUTHINE LIGANDS', Journal of Coordination Chemistry, 12: 1, 53 – 57

To link to this Article: DOI: 10.1080/00958978208075842 URL: http://dx.doi.org/10.1080/00958978208075842

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1982, Vol. 12, pp. 53-57 0095-8972/82/1201-0053\$06.50/0

THE SYNTHESIS AND PROPERTIES OF SUBSTITUTED TERTIARY BISMUTHINE LIGANDS

WILLIAM LEVASON[†], BAHARRUDIN SHEIKH AND FRANCIS P. McCULLOUGH[‡]

Department of Chemistry, The University, Southampton, SO9 5NH

(Received January 11, 1982)

The synthesis of functionally substituted (OMe, $-NMe_2$, -SMe) organobismuthine ligands – specifically ($o-MeOC_6H_4$)₂Bi, ($o-MeSC_6H_4$)₃Bi, ($o-Me_2NC_6H_4$)₃Bi, ($o-MeOC_6H_4$)Ph₂Bi, ($o-MeSC_6H_4$)Ph₂Bi and ($o-Me_2NC_6H_4$)Ph₂Bi is described. (o-Chlorophenyl)diphenylbismuthine reacts with sodium diphenylstibide ($NaSbPh_2$) to give (o-diphenylstibinophenyl)diphenylbismuthine $o-C_6H_4$ (SbPh₂)(BiPh₂). The ¹H nmr and mass spectra of these ligands, and of ($o-MeC_6H_4$)₃Bi and ($p-MeC_6H_4$)₃Bi are reported and discussed.

INTRODUCTION

The chemistry of organobismuth compounds is not extensive¹ due both to the weak C-Bi bond, and to limited efforts in the area. The coordination chemistry of bismuth ligands is very limited indeed,^{2,3} and largely confined to substituted carbonyl complexes. One way in which the weak donor power of bismuthines may be overcome, and new examples of M-Bi linkages produced is the incorporation of other donor groups into the bismuthine. Examples of this approach are the arsenic-bismuth and phosphorus-bismuth ligands $Bi(o-C_6H_4ASMe_2)_3$, $Bi(CH_2CH_2CH_2ASMe_2)_3$, $^4o-C_6H_4(PPh_2)(BiPh_2)$ and $o-C_6H_4(ASPh_2)-(BiPh_2)$, 5 and the present work describes oxygen (-OMe), sulphur (-SMe) and nitrogen ($-NMe_2$) analogues. (o- and p-MeOC₆H₄)₃Bi and (p-Me₂NC₆H₄)₃Bi have been described,^{6,7} and we^{8,9} have recently discussed some antimony analogues.

RESULTS AND DISCUSSION

Tris (o-methoxyphenyl)bismuthine (o-MeOC₆H₄)₃Bi, was prepared in moderate yield (20%) from o-MeOC₆H₄MgBr and BiCl₃ in tetrahydrofuran. The ligand was recrystallised from acetone, and retains some solvent, melting at 151–152°C. Supniewski⁷ prepared the compound in diethyl ether and reported an MP of 169°C. Our product once melted and cooled remelts at 167°C and is clearly the same compound. Tris(o-methylthiophenyl)bismuthine: (o-MeSC₆H₄)₃Bi was readily prepared from o-C₆H₄(SMe)Br,⁸ n-BuLi and BiCl₃ in THF. Both ligands are white crystalline solids which are indefinitely stable.

In contrast tris(α -dimethylaminophenyl)bismuthine (o-Me₂NC₆H₄)₃Bi proved to be difficult to obtain in the pure state. The reaction of o-C₆H₄Br(NMe₂),⁹ n-BuLi and BiCl₃ in THF gave a clear oil, which was dissolved in ethanol and allowed to crystallise slowly in the refrigerator. The yield of yellowish crystals (11%) was poor. These crystals appear to be indefinitely stable in the dark, but on exposure to light for several hours they become

[†]Author to whom all correspondence should be addressed.

[‡]Present address: Dow Chemicals (Texas Division), (I + MR), Freeport, Texas, USA.

discoloured and turn pale green. The material also appears to be light sensitive in solution, since solutions in acetone, CH_2Cl_2 or ethanol left on the bench to crystallise, often deposited greenish materials which did not completely redissolve in the same solvent. Gilman and Yablunky⁶ appear to have had similar problems with $(p-Me_2NC_6H_4)_3Bi$, although they did not discuss it in detail.

The unsymmetrical ligands $Ph_2Bi(o-C_6H_4Y)$ (Y = OMe, SMe, NMe₂) were prepared from $o-C_6H_4BrY$, *n*-BuLi and Ph_2BiCl , all of the reactions being conducted at 0°C, followed by warming to room temperature, since refluxing of the reaction mixtures seems to produce considerable decomposition. (o-Methoxyphenyl)diphenylbismuthine is a white crystalline solid, but the (o-methylthiophenyl)diphenylbismuthine was obtained as a colourless oil. The oil became very viscous on cooling, but all attempts to crystallise it even at $-20^{\circ}C$ failed. The amine-bismuthine $o-Me_2NC_6H_4$ -BiPh₂ appears to be somewhat sensitive to light, but the decomposition seems to be less readily produced than with $(Me_2NC_6H_4)_3Bi$. The proton nmr spectra of these ligands are listed in Table I.

The monogrignard reagent derived¹⁰ from o-bromochlorobenzene (o-ClC₆H₄MgBr) reacted with Ph₂BiCl at 0°C to give a poor yield of o-chlorophenyldiphenylbismuthine, a yellowish waxy solid MP 68°C. Gilman⁶ briefly mentions the tris(o-chlorophenyl)bismuthine analogue. It seemed that o-ClC₆H₄BiPh₂ could be a useful intermediate, providing the chlorine can be substituted without breaking the Bi-C bonds. Carbon-bismuth bonds are readily cleaved by RLi,¹¹ so that reaction with group VB nucleophiles seemed a better approach to new ligands rather than the n-BuLi/R₂ECl route. A similar approach (NaSbPh₂ + o-C₆H₄Br(SbPh₂)) was successful in the preparation of o-C₆H₄(SbPh₂)₂.¹² We find that LiSbPh₂ in THF reacts with o-ClC₆H₄BiPh₂ to give the new ligand o-C₆H₄(SbPh₂)(BiPh₂) as white needles. The preparation of this stibine-bismuthine means that of the series o-C₆H₄(EPh₂)(E'Ph₂) (E,E' = P,As, Sb, Bi) all the possible combinations are known⁵ except for o-C₆H₄(BiPh₂)₂.

The mass spectra of the bismuthines were recorded (Experimental section) since they provide the clearest evidence for the constitution of the products obtained. There are contradictory reports in the literature of the mass spectra of BiPh₃ both Bi⁺ ^{13,14} and PhBi⁺ ^{15,16} being reported as base peaks, although all agree that the parent ion is either of very low intensity or not detected. Spalding¹⁵ reports that $(p-tolyl)_3Bi$ is similar, but that $(o-tolyl)_3Bi$ differs in giving a parent ion (I = 6.3% of the ion current). We generally confirm these observations although in our spectra Bi⁺ was the base peak for both the tolylbismuthines, whilst Spalding¹⁵ reports BiC₇H⁺₇ as base.

The effect of *o*-substituents is clear in the spectra of $(o-\text{MeOC}_6H_4)_3\text{Bi}$ and $o-\text{MeOC}_6H_4\text{BiPh}_2$. The latter shows Bi⁺ as base peak and an intense PhBi⁺, but only weak [P-Ph]⁺ and [P-C₇H₇O]⁺, and we did not detect a parent ion. In contrast the former shows a parent ion, an intense [P-C₇H₇O]⁺ ion and [BiC₇H₇O]⁺ is the base peak. Similar effects are

¹ H NMR Data on the bismuthines ^a		
$Bi(o-C_6H_4CH_3)_3$	$2.3-2.9(m) C_6H_4$	7.55(s) CH ₃
$Bi(p-C_6H_4CH_3)_3$	2.4(d) 2.85(d) C ₆ H ₄	7.7(s) CH ₃
Bi(o-C_6H_4OCH_3)_3	2.5–3.1(m) C ₆ H ₄	6.3(s) OCH ₃
$Bi(o-C_6H_4OCH_3)(C_6H_5)_2$	$2.2-3.0(m) C_6H_4 + C_6H_5$	6.3(s) OCH ₃
$Bi(o-C_6H_4SCH_3)_3$	2.3–2.9(m) C_6H_4	7.6(s) SCH3
Bi(o-C_6H_4SCH_3)(C_6H_5)_2	2.2–2.8(m) $C_6H_4 + C_6H_5$	7.8(s) SCH3
$Bi[o-C_6H_4N(CH_3)_2]_3$	2.4–2.8(m) C_6H_4	7.3(s) NCH3
$Bi[o-C_6H_4N(CH_3)_2](C_6H_5)_2$	2.2–2.8(m) $C_6H_4 + C_6H_5$	7.4(s) NCH3

TABLE I

*In CDCl₃ r scale relative TMS. Intensities are as expected.

seen in the spectra of both $(o-MeSC_6H_4)_3Bi$ and $o-MeSC_6H_4BiPh_2$, and in the aminebismuthines.

The spectrum of o-ClC₆H₄BiPh₂ is reminiscent of BiPh₃, only Bi⁺ and BiPh⁺ are prominent bismuth-containing fragments. The spectrum of o-C₆H₄(BiPh₂)(SbPh₂) is consistent with those reported for the lighter analogues.^{5,11,17}

EXPERIMENTAL

Physical measurements were made as described previously.⁸ Diphenylchlorobismuth, Ph_2BiCl was obtained from $BiCl_3$ and $Ph_3Bi.^5$ All reactions were conducted under a dry dinitrogen atmosphere.

Tris(o-methoxyphenyl)bismuthine

The grignard reagent prepared from o-bromoanisole (30 g, 0.16 mol) and magnesium (3.8 g, 0.16 mol) in dry tetrahydrofuran (100 cm³) was treated dropwise with a solution of bismuth trichloride (16.8 g, 0.05 mol) in THF (50 cm³). The mixture was stirred at room temperature for 1 hour, and then hydrolysed with aqueous ammonium chloride solution. The organic layer was separated, dried (Na₂SO₄), and evaporated, and the oil crystallised from ethanol. Recrystallisation from acetone gave a white crystalline solid 7.5 g, 20%. MP 150–152° (on remelting 167°C see text) fd C = 47.5%, H = 3.6%. C₂₁H₂₁O₃Bi req C = 47.8%, H = 3.7%. Mass spectrum[†] m/e = 530(1.5) C₂₁H₂₁O₃Bi; 423(21.5) C₁₄H₁₄O₂Bi; 316(100) C₇H₇OBi; 214(8.5) C₁₄H₁₄O₂; 209(63) Bi; 107(16) C₇H₇O.

(o-Methoxyphenyl)diphenylbismuthine

o-Bromoanisole (15 g, 0.08 mol) was added dropwise to a stirred solution of *n*-butyllithium (40 cm³ 2 M) in THF (100 cm³) at 0°C, and after 1 hour, chlorodiphenylbismuth (32 g, 0.08 mol) in THF (100 cm³) was added. The greyish mixture was stirred for a further 1 hour, allowed to warm to room temperature and worked up as above. The product was recrystallised from ethanol 31 g, 82%. MP 74°C. fd C = 48.5%, H = 3.6%. C₁₉H₁₇OBi req C = 48.1%, H = 3.6%. Mass spectrum: 393(1) C₁₃H₁₂OBi; 363(3.5) C₁₂H₁₀Bi; 316(7) C₇H₇OBi; 286(75) C₆H₅Bi; 209(100) Bi; 154(11) C₁₂H₁₀.

Tris(o-methylthiophenyl)bismuthine

Was prepared in a similar manner to the methoxy analogue from *o*-bromophenylmethylsulphide (20 g, 0.09 mol), *n*-BuLi (45 cm³, 1.6 M), and bismuth trichloride (10.4 g, 0.03 mol) in THF, and recrystallised from ethanol. 7.5 g, 40%. MP 117–118°C.fdC = 43.2%, H = 3.4%. $C_{21}H_{21}S_{3}Bi$ req C = 43.6%, H = 3.6%. Mass spectrum: 578(30) $C_{21}H_{21}S_{3}Bi$; 563(25) $C_{20}H_{18}S_{3}Bi$; 455(57) $C_{14}H_{14}S_{2}Bi$; 332(32) $C_{7}H_{7}SBi$; 317(28) $C_{6}H_{4}SBi$; 231(10.5) $C_{13}H_{11}S_{2}$; 216(20.5) $C_{12}H_{8}S_{2}$; 209(100) Bi; 199(33) $C_{13}H_{11}S$; 184(59) $C_{12}H_{8}S$; 123(30) $C_{7}H_{7}S$; 108(41) $C_{6}H_{4}S$.

(0-Methylthiophenyl)diphenylbismuthine

Was obtained similarly from $o-C_6H_4Br(SMe)$ (9.7 g, 0.05 mol), *n*-BuLi (36 cm³, 1 M) and Ph₂BiCl (19.0 g, 0.05 M) in diethyl ether/THF. The product was an oil which did not solidify

[†]M/e (% internal base) ion.

after 10 weeks at -10° C, or crystallise from ethanol, acetone, CH₂Cl₂ or *i*-propanol. It was purified by pumping at 10^{-1} torr for 3 days at room temperature. 14 g, 61%. fd C = 47.6%, H = 4.1%. C₁₉H₁₇SBi req C = 47.8%, H = 3.6%. Mass spectrum: 486(7) C₁₉H₁₇SBi; 409(21) C₁₃H₁₂SBi; 363(5) C₁₂H₁₀Bi; 332(11) C₇H₇SBi; 317(7) C₆H₄SBi; 286(85.5) C₆H₅Bi; 209(100)Bi; 184(11) C₁₂H₈S; 154(12) C₁₂H₁₀.

Tris(o-dimethylaminophenyl)bismuthine

Was prepared similarly to the methoxy compound from $o - C_6 H_4 Br(NMe_2)$ (20 g, 0.1 mol) *n*-BuLi (50 cm³, 1 M) and BiCl₃ (10.5 g, 0.03 mol) in diethyl ether/THF. The oil obtained was dissolved in ethanol, and crystallised slowly in the dark. 2 g, 11%. MP 127-130°C. The yellowish crystals were stirred in the dark, fd C = 50.3%, H = 5.1%, N = 7.2%. $C_{24}H_{30}N_3Bi$ req C = 50.6%, H = 5.3%, H = 7.4%. Mass spectrum: 569(1.5) $C_{24}H_{30}N_3Bi$; 449(32.5) $C_{16}H_{20}N_2Bi$; 329(5) $C_8H_{10}NBi$; 240(5) $C_{16}H_{20}N_2$; 209(13) Bi; 121(100) $C_8H_{10}N$; 105(14) C_7H_7N .

(o-Dimethylaminphenyl)diphenylbismuthine

Was prepared from $o-C_6H_4Br(NMe_2)$ (10.0 g, 0.05 mol), *n*-BuLi (27 cm³, 1 M), Ph₂BiCl (20.2 g, 0.05 mol) in diethyl ether/THF at 0°C. The oil was crystallised from a 1 : 1 ethanol-/acetone mixture at 0°C. 3.5 g, 15%. MP 72-73°C. fd C = 49.3%, H = 4.4%, N = 3.0%. C₂₀H₂₀NBi req C = 49.6%, H = 4.1%, N = 2.9%. Mass spectrum: 483(2) C₂₀H₂₀NBi; 406(3) C₁₃H₁₅NBi; 363(5) C₁₂H₁₀Bi; 329(1) C₈H₁₀NBi; 286(80) C₆H₅Bi; 209(100) Bi; 197(8) C₁₄H₁₅N; 154(17) C₁₂H₁₀; 121(17.5) C₈H₁₀N.

(o-Chlorophenyl)diphenylbismuthine

The grignard reagent prepared from o-bromochlorobenzene (20 g, 0.1 mol) in diethyl ether (200 cm³) and magnesium (3 g, 0.15 mol) was transferred into a dropping funnel, and added slowly to a stirred solution of Ph₂BiCl (40 g, 0.1 mol) in THF (200 cm³) at 0°C, and the mixture allowed to stand for 1 hour. It was hydrolysed, the organic layer separated, dried (Na₂SO₄) and evaporated. The oil remaining was crystallised from ethanol. 11 g, 22%. MP 68°C. fd C = 44.6%, H = 3.0%. C₁₈H₁₄ClBi req C = 44.6%, H = 2.95%. Mass spectrum[†]: 398(1.5) C₁₂H₉ClBi; 363(2) C₁₂H₁₀Bi; 320(15) C₆H₄ClBi; 286(65) C₆H₅Bi; 209(100) Bi; 154(10) C₁₂H₁₀.

(o-Diphenylstibinophenyl)diphenylbismuthine

Lithium diphenylstibide solution⁹ prepared from lithium (1.5 g, 0.2 mol), triphenylantimony (7.0 g, 0.02 mol) and THF (100 cm³), was filtered to remove the excess lithium, 'BuCl (1.3 g, 0.15 mol) added, and the resulting solution added dropwise to a solution of *o*-chlorophenyldiphenylbismuthine (10 g 0.02 mol) in THF (100 cm³) at 0°C. The red stibide colour was discharged, and the mixture developed a green colour. Hydrolysis and work up in the usual way gave a white solid. This was recrystallised from *i*-propanol. 8.5 g, 57%. MP 59-61°C. fd C = 50.9%, H = 3.4%. C₂₄H₃₀SbBi req C = 50.4%, H = 3.35%. Mass spectrum[†]: 714(2) C₃₀H₂₄SbBi; 637(1) C₂₄H₁₉SbBi; 560(4) C₁₈H₁₄SbBi; 351(6.5) C₁₈H₁₄Sb; 286(87) C₆H₅Bi; 275(40) C₁₂H₁₀Sb; 273(30) C₁₂H₈Sb; 209(100) Bi; 198(52) C₆H₅Sb; 154(38) C₁₂H₁₀.

⁺¹²¹Sb and ³⁵Cl only. Relative intensities uncorrected.

Tris(o-tolyl)bismuthine and Tris(p-tolyl)bismuthine

These were prepared from the o-bromotoluene or p-bromotoluene, Mg and $BiCl_3$ as described in the literature.^{7,18}

Tris(0-*tolyl*)*bismuthine* (51%. MP 130°C (Lit 128).⁷ fd C = 52.3%, H = 4.2%. C₂₁H₂₁Bi req C = 52.3%, H = 4.35%. Mass spectrum: $482(12) C_{21}H_{21}Bi$; $391(27) C_{14}H_{14}Bi$; $300(52) C_{7}H_{7}Bi$; 209(100) Bi; $182(19) C_{14}H_{14}$; $91(10) C_{7}H_{7}$.

Tris(p-tolyl)bismuthine (40%). MP 114-115°C (Lit 117°C).¹⁸ fd C = 52.5%, H = 4.1%. $C_{21}H_{21}Bi$ req C = 52.3%, H = 4.35%. Mass spectrum: 391(21) $C_{14}H_{14}Bi$; 300(82.5) $C_{7}H_{7}Bi$; 209(100) Bi; 182(18) $C_{14}H_{14}$; 91(55) $C_{7}H_{7}$.

ACKNOWLEDGEMENTS

We thank the British Council (BS) and Southampton University for support, and Dr J. Evans for recording the mass spectra.

REFERENCES

- 1. Gmelin Handbuch, 47, Bismut Organische Verbindungen, Springer Verlag, 1977.
- 2. W. Levason and C. A. McAuliffe, Acc. Chem. Res., 11, 363, (1978).
- 3. M. J. Taylor, Metal-Metal Bonded Compounds of the Main Group Elements, Academic Press NY, 1975.
- 4. W. Levason, C. A. McAuliffe and S. G. Murray, JCS Dalton, 711, (1977).
- 5. W. Levason, C. A. McAuliffe and R. D. Sedgwick, J. Organometal Chem., 122, 351, (1976).
- 6. H. Gilman and H. L. Yablunky, J. Amer. Chem. Soc., 63, 207, (1941).
- 7. J. Supniewski, Roczniki Chem., 6, 97, (1926).
- J. Supniewski and R. Adams, J. Amer. Chem. Soc., 48, 507, (1926).
- 8. W. Levason and B. Sheikh, J. Organometal Chem., 208, 1, (1981).
- 9. W. Levason and B. Sheikh, J. Organometal Chem., 209, 161, (1981).
- 10. F. A. Hart, J. Chem. Soc., 3324, (1960).
- 11. H. Gilman and H. L. Yale, J. Amer. Chem. Soc., 72, 8, (1950).
- 12. W. Levason, C. A. McAuliffe and S. G. Murray, J. Organometal Chem., 88, 171, (1975).
- 13. D. Hellwinkel, C. Wunsche and M. Bach, Phosphorus, 2, 167, (1973).
- 14. D. E. Bublitz and A. W. Baker, J. Organometal Chem., 9, 383, (1967).
- 15. T. R. Spalding, Org. Mass. Spectrom., 11, 1019, (1976).
- 16. J. H. Bowie and B. Nussey, Org. Mass. Spectrom., 3, 933, (1970).
- 17. W. Levason, C. A. McAuliffe and R. D. Sedgwick, J. Organomet. Chem., 84, 239, (1975).
- 18. J. Supniewski, Roczniki Chem., 5, 298, (1925).